目的 运用网络药理学理念和网络分析技术研究红花注射液主要活性成分对脑血管疾病网络的调控作用。方法 整合HPRD和BioGRID蛋白-蛋白相互作用关系,为网络构建提供基础。利用公共数据库RGD中脑血管疾病相关基因构建疾病网络。全面收集PubMed中红花注射液5个主要活性成分的靶点信息,提取成分-靶点关系,整合脑血管疾病网络构建成分-靶点网络。运用网络拓扑学属性分析、子簇聚类算法及网络GO富集分析,发现成分-靶点网络的关键靶点、生物学途径及成分之间的协同作用。结果 成分-靶点网络含有940个节点,2 360条连接。MCODE分析得到28个子簇,其中节点数≥3的子簇有18个,对得分≥3的6个子簇开展BinGO分析,发现子簇涉及的生物学过程主要有生物大分子合成及代谢、神经再生、凋亡、血管生成、免疫炎症反应、缺氧应激响应等,其中羟基红花黄色素A和槲皮素可能通过协同抗凋亡的作用发挥抗脑血管疾病作用。 结论 本实验运用网络药理学方法和技术,从分子网络层面揭示了红花注射液主要活性成分抗脑血管疾病的多靶点、多途径作用模式及成分间存在的协同作用。
Abstract
OBJECTIVE To investigate the regulation effects of main active components in Honghua Injection on cerebrovascular disease network. METHODS Cerebrovascular disease network was constructed using genes from public database RGD based on the protein-protein interaction (PPI) relationship databases HPRD and BioGRID. Then targets of five main active components in Honghua injection was retrieved from PubMed. Component-target relationships were extracted and associated with PPI in cerebrovascular disease. Component-target network was constructed with Cytoscape 3.1.0 . Network analysis technologies were applied to find critical targets, biological pathways and potential synergistic effects among components. RESULTS The component-target network contains 940 nodes and 2 360 edges. MCODE analysis extracted 28 clusters in which 18 clusters had at least 3 nodes. There were 6 clusters with score ≥3, and they were further investigated using BinGO analysis. The results showed that the main biological processes included regulation of macromolecule biosynthetic and metabolic processes, neurogenesis, apoptosis, angiogenesis, immune-inflammation reaction, response to hypoxia stress. Our study also indicated that Hydroxysafflor yellow A and Quercetin may show their cerebrovascular-protective potential based on their synergistic anti-apoptosis effects. CONCLUSION From the view of molecular network, our study applied network pharmacology METHODS and technologies to reveal the multi-target, multi-pathway mode of action of Honghua injection on anti-cerebrovascular disease effects, and the synergistic effects among Hydroxysafflor yellow A and quercetin.
关键词
网络药理学 /
脑血管疾病网络 /
网络分析 /
成分-靶点网络 /
红花注射液 /
生物学过程
{{custom_keyword}} /
Key words
network pharmacology /
cerebrovascular disease network /
network analysis /
component-target network /
Honghua Injection /
biological pathway
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WHO Fact sheet N°310 . Updated May 2014. http://www.who.int/mediacentre/factsheets/fs310/en/.
[2] WANG W. The research status and development direction of cerebrovascular disease prevention and control in China .Chin J Contemp Neurol Neurosur (中国现代神经疾病杂志),2011,11(2):134-137.
[3] Ministry of Public Health P R China. Chinese Traditional Patent Formulation (中药成方制剂). 1998, 20:108.
[4] ZHANG C Y. Influence of Honghua Injection on effects, blood fat and hemorheology in cerebral infarction patients. Chin J New Drugs Clin Rem (中国新药与临床杂志), 2001,20(4): 273-275.
[5] CHEN P H. Therapeutic effect of Honghua Injection on acute cerebral infarction. Hebei J Tradit Chin Med(河北中医), 2000, 22(9): 649-650.
[6] LIU Q, CHEN C, DAI Z, et al. Active ingredient identification and dose response relationship comparison for the Safflower Injection from different manufacturres . Chin J Pharm Anal (药物分析杂志), 2012,32(7):1158-1161.
[7] LIU Y, YU J, DAI Z, et al. Study on quality control of Honghua Injection . Chin J Pharma Anal (药物分析杂志), 2010,30(9):1732-1734.
[8] DOU C, QIN X, DONG H, et al. Determination and specific chromatogram study of flavonols in Saffron Injection for the quality control by HPLC . Chin Hosp Pharm J (中国医院药学杂志), 2009,29(21):1846-1849.
[9] FAN L, PU R, ZHAO H Y, et al. Stability and degradation of hydroxysafflor yellow A and anhydrosafflor yellow B in the Safflower Injection studied by HPLC-DAD-ESI-MSn. J Chin Pharm Sci(中国药学英文版), 2011, 20(1):47-56.
[10] ALBERT-LASZLO B, ZOLTAN N. Network biology: Understanding the cell′s functional organization. Nat Rev Genet, 2004, 5(2): 101-113.
[11] ANDREW L. Network pharmacology . Nat Biotechnol, 2007, 25(10): 1110-1111.
[12] ANDREW L. Network pharmacology: The next paradigm in drug discovery . Nat Chem Biol, 2008, 4(11): 682-690.
[13] BARABASI A, GULBAHCE N, LOSCALZO J. Network medicine: A network-based approach to human disease . Nat Rev Genet, 2011, 12(1): 56-68.
[14] LI S, ZHANG B. Traditional Chinese medicine network pharmacology: Theory, methodology and application . Chin J Nat Med, 2013, 11(2): 110-120.
[15] ZHAO J, ZHANG W. Progress on systems biology based multi-target and multi-component drug research . Chin Pharm J(中国药学杂志), 2010, 45(15): 1121-1126.
[16] YU X, YANG W, WU B, et al. Prediction of anti-diabetes effects of Corydalis yanhusuo alkaloids with pharmacology network technology and experimental validation in ICR mice. Chin Pharm J(中国药学杂志), 2014, 49(11): 913-918.
[17] DWINELL M, WORTHEY E, SHIMOYAMA M, et al. The rat genome database 2009: Variation, ontologies and pathways . Nucl Acid Res, 2009, 37(suppl 1): 744-749.
[18] YOON J, BLUMER A, LEE K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality . Bioinformatics, 2006, 22(24): 3106-3108.
[19] BADER G, HOGUE C. An automated method for finding molecular complexes in large protein interaction networks . BMC Bioinformatics, 2003, 4(1): 2-28.
[20] MAERE S, HEYMANS K, KUIPER M. BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks . Bioinformatics, 2005, 21(16): 3448-3449.
[21] LI X, WU L H, FAN X H, et al. Network pharmacology study on major active compounds of Fufang Danshen Formula. China J Chin Mater Med (中国中药杂志), 2011, 36(21): 2911-2915.
[22] LI X, WU L, LIU W, et al. A network pharmacology study of Chinese medicine Qishenyiqi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PloS One, 2014, 9(5): e95004.
[23] WU L, LI X, YANG J, et al. CHD@ ZJU: A knowledgebase providing network-based research platform on coronary heart disease. Database-Oxford, 2013, doi:10.1093/database/bat047.
[24] WANG L, LI Z, ZHAO X, et al. A network study of Chinese medicine Xuesaitong Injection to elucidate a complex mode of action with multicompound, multitarget, and multipathway. Evid-Based Complement Altern, 2013, 2013:652373, http://dx.doi.org/10.1155/2013/652373.
[25] ZHAO J, JIANG P, ZHANG W. Molecular networks for the study of TCM pharmacology . Brief Bioinform, 2010, 11(4): 417-430.
[26] ZHANG G B, LI Q Y, CHEN Q L, et al. Network pharmacology: A new approach for Chinese herbal medicine research. Evid-Based Complement Altern, 2013, doi: 10.1155/2013/621423.
[27] WANG Y, GAO X M, ZHANG B L, et al. Building methodology for discovering and developing Chinese medicine based on network biology. China J Chin Mater Med (中国中药杂志),2011, 36(2):228-231.
[28] DIEZ D, WHEELOCK M, GOTO S, et al. The use of network analyses for elucidating mechanisms in cardiovascular disease . Mol Biosyst, 2010, 6(2): 289-304.
[29] AHMAD A, KHAN M M, HODA M N, et al.Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion.Neurochem Res, 2011,36(8):1360-1371.
[30] YUAN Y M, QIAN X D, CAO H B. A study of research progress on anti-cerebrovsacular ischemia injury of hydroxysafflor yellow A . Her Med (医药导报), 2012, 31(8): 1045-1049.
[31] CHEN M, ZHAO P W, SUN Y L, et al. Advances in pharmacological function of Carthamus tinctorius and its essential constitutes . Glob Tradl Chin Med (环球中医药), 2012, 5(7): 556-560.
[32] CHEN L, XIANG Y, KONG L, et al. Hydroxysafflor yellow A protects against cerebral ischemia-reperfusion injury by anti-apoptotic effect through PI3K/Akt/GSK3b pathway in rat. Neurochem Res, 2013, 38(11): 2268-2275.
YU L, HU G Q, LI Y J, et al. Effects of kaempferol on astrocytes and axons of rats with chronic cerebral ischemia. J Luzhou Med Coll(泸州医学院学报), 2014, 37(2): 179-181.
[33] DONG M, XIAO L, SONG M K. Effects of kaempferol on voltage-gated potassium currents in CA1 pyramidal neurons of rat hippocampus in acutely transient hypoxia.Cent South Pharm (中南药学), 2004, 2(3): 135-138.
[34] PARK S E, SAPKOTA K, KIM S, et al.Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells.Br J Pharmacol, 2011, 164(3): 1008-1025.
[35] JANG Y J, KIM J, SHIM J, et al.Kaempferol attenuates 4-hydroxynonenal-induced apoptosis in PC12 cells by directly inhibiting NADPH oxidase.J Pharmacol Exp Ther,2011,337(3): 747-754.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}